Scope and Limitations of 3‐Iodo‐Kdo Fluoride‐Based Glycosylation Chemistry using N‐Acetyl Glucosamine Acceptors†
نویسندگان
چکیده
The ketosidic linkage of 3-deoxy-d-manno-octulosonic acid (Kdo) to lipid A constitutes a general structural feature of the bacterial lipopolysaccharide core. Glycosylation reactions of Kdo donors, however, are challenging due to the absence of a directing group at C-3 and elimination reactions resulting in low yields and anomeric selectivities of the glycosides. While 3-iodo-Kdo fluoride donors showed excellent glycosyl donor properties for the assembly of Kdo oligomers, glycosylation of N-acetyl-glucosamine derivatives was not straightforward. Specifically, oxazoline formation of a β-anomeric methyl glycoside, as well as iodonium ion transfer to an allylic aglycon was found. In addition, dehalogenation of the directing group by hydrogen atom transfer proved to be incompatible with free hydroxyl groups next to benzyl groups. In contrast, glycosylation of a suitably protected methyl 2-acetamido-2-deoxy-α-d-glucopyranoside derivative and subsequent deiodination proceeded in excellent yields and α-specificity, and allowed for subsequent 4-O-phosphorylation. This way, the disaccharides α-Kdo-(2→6)-α-GlcNAcOMe and α-Kdo-(2→6)-α-GlcNAcOMe-4-phosphate were obtained in good overall yields.
منابع مشابه
Synthesis of a Pentasaccharide Fragment Related to the Inner Core Region of Rhizobial and Agrobacterial Lipopolysaccharides
The pentasaccharide fragment α-d-Man-(1 → 5)-[α-d-Kdo-(2 → 4)-]α-d-Kdo-(2 → 6)-β-d-GlcNAc-(1 → 6)-α-d-GlcNAc equipped with a 3-aminopropyl spacer moiety was prepared by a sequential assembly of monosaccharide building blocks. The glucosamine disaccharide-as a backbone surrogate of the bacterial lipid A region-was synthesized using an 1,3-oxazoline donor, which was followed by coupling with an i...
متن کاملDirect formation of beta-glycosides of N-acetyl glycosamines mediated by rare earth metal triflates.
A direct, mild and efficient protocol for the preparation of beta-glycosides of N-acetyl glucosamine (GlcNAc) and N-acetyl galactosamine (GalNAc) has been developed using peracetylated beta-GlcNAc and beta-GalNAc as donors. All rare Earth metal triflate promoters screened were found to promote glycosylation with Sc(OTf)(3) being superior in terms of reaction rate. Simple alcohol glycosylation w...
متن کاملLocalization of GTP-stimulated core glycosylation to fused microsomes
Purified rough microsomes from liver maximally incorporated N-acetyl-[3H]glucosamine into endogenous acceptors from UDP-N-acetyl-[3H]glucosamine substrate, providing the associated ribosomes were removed and 0.5 mM GTP was added. These conditions also led to the coalescence of microsomes into large fused membranes. By measurement of membrane profiles on electron micrographs, a correlation was o...
متن کاملChemical characterization of the lipopolysaccharides from enteropathogenic Escherichia coli O142 and O158.
Lipopolysaccharides (LPS) from two enteropathogenic strains of E. coli O142 and O158 were isolated by hot phenol-water extraction procedure. Polyacrylamide gel electrophoretic pattern of the LPS showed the typical ladder like pattern of smooth type of LPS. The LPS of E. coli O158 was found to contain L-rhamnose, D-glucose and N-acetyl-D-galactosamine as major constituents together with D-galact...
متن کاملTransferase Activity of Lactobacillal and Bifidobacterial β-Galactosidases with Various Sugars as Galactosyl Acceptors
The β-galactosidases from Lactobacillus reuteri L103 (Lreuβgal), Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (Lbulβgal), and Bifidobacterium breve DSM 20281 (Bbreβgal-I and Bbreβgal-II) were investigated in detail with respect to their propensity to transfer galactosyl moieties onto lactose, its hydrolysis products D-glucose and D-galactose, and certain sugar acceptors such as N-acety...
متن کامل